Mean curvature flow of entire graphs evolving away from the heat flow
نویسندگان
چکیده
منابع مشابه
Lagrangian Mean Curvature Flow for Entire Lipschitz Graphs
We consider the mean curvature flow of entire Lagrangian graphs with Lipschitz continuous initial data. Assuming only a certain bound on the Lipschitz norm of an initial entire Lagrangian graph in R, we show that the parabolic equation (1.1) has a longtime solution which is smooth for all positive time and satisfies uniform estimates away from time t = 0. In particular, under the mean curvature...
متن کاملLagrangian mean curvature flow for entire Lipschitz graphs II
We prove longtime existence and estimates for smooth solutions to a fully nonlinear Lagrangian parabolic equation with locally C1,1 initial data u0 satisfying either (1) −(1+ η)In ≤ Du0 ≤ (1+ η)In for some positive dimensional constant η, (2) u0 is weakly convex everywhere, or (3) u0 verifies a large supercritical Lagrangian phase condition. Mathematics Subject Classification (2000) Primary 53C...
متن کاملMean curvature flow of spacelike graphs
We prove the mean curvature flow of a spacelike graph in (Σ1 ×Σ2,g1 −g2) of a map f : Σ1 → Σ2 from a closed Riemannian manifold (Σ1,g1) with Ricci1 > 0 to a complete Riemannian manifold (Σ2,g2) with bounded curvature tensor and derivatives, and with K2 ≤ K1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2 ≤ K1...
متن کاملEntire Self-similar Solutions to Lagrangian Mean Curvature Flow
Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with th...
متن کاملMean Curvature Blowup in Mean Curvature Flow
In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2016
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/13238